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I N T E R A C T I O N  O F  N O N L I N E A R  W A V E S  IN M A T E R I A L S  

W I T H  E L A S T O P L A S T I C  B E H A V I O R  

N. N. Myagkov UDC 534.222+539.374 

Introduction. As a rule in considering wave problems in condensed materials it is necessary to take account of 

elastoplastic behavior which may be described by a strongly linear or hysteresis shear stress-shear strain relationship or by 
a Maxwellian model with nonlinear time for tangential stress relaxation. This behavior is typical not only for traditional physics 

problems for shock with loading at amplitudes from several to tens of gigapascals [1], but also with quite small amplitudes in 
metals when the effects of microplasticity are quite marked [2, 3] (so-called 'anomalous nonlinearity' of elastic materials), in 

polymers with destructive plasticity [3], etc. In the majority of these cases of practical interest wavers may be considered weak 
in the sense of the smallness of stress in the wave compared with the all-round compression modulus. 

In order to solve the problem of wave propagation with a small but finite amplitude in hydrodynamics an effective 
asymptotic multiscale method has been developed [4, 5] which makes it possible from a complex original system to obtain a 

nonlinear equation giving a uniform convenient first approximation for solving the original system. A method discovered in 

[6] by this technique of factorizing the original system into a set of independent nonlinear equations relating to different families 

of characteristics has made it possible, apart from Burgers turbulence in [6], to consider problems in which there is also marked 
counter-interaction of waves, for example an acoustic resonator [7] and an elastic layer [8]. 

In the present work factorization is provided for a nonlinear Maxwell body set of equations which is universal for 
describing the dynamic behavior of condensed materials with elastoplastic kinetics, and a rough set of independent nonlinear 

equations is obtained for waves which relate to different families of longitudinal characteristics; waves are connected implicitly 

through the nonuniform shear of phases. The form of the equation for the phase function which describes interaction as a result 
of elastoplasticity follows from considering the problem of plane elastic wave propagation over a constant background and in 
the general case it is prompted by group expressions. Rough sets are obtained for materials which are unbounded in transverse 

directions and they are suitable for describing traditional shock-wave experiments in a layer (this case is discussed in more 

detail) and for a thin rod with microplastic deformation kinetics. 
The problem of the self-interaction of a plane shock wave with emergence of it at a free surface for a model of an 

ideally elastoplastic material is resolved analytically. This problem is of considerable practical interest since experiments for 

measuring the velocity profile for a free [9] or contact [10, 11] surface are fundamental for determining the dynamic properties 

of metals. 
Equations of Motion. Small Parameters. In order to describe the behavior of compact condensed materials with 

dynamic effects it is possible to use as universal equations for a nonlinear Maxwell body [12]: 

p ( a u / a O  - ocr~/ax~ - ao~y/ax~ = o, 

1r 1 
de , i /a t  = -2( ~ - 2e~)(Ouk/Oxj) + -2(6ik - 2~k)(Ou~/Ox~) + ~ii, 

d p / d t  + p(Ouk/OXk) = O, 

I 
a r C d S / d t )  = O/Ox~l~, (or /ox~)  l + ~ C ( O u / O x . )  - ~(Oe/O~m~)~',~ i, 

(1) 
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2 
o~  = ~(Ou,/,~x~ + ou/ax) ,  + (~ - 3 -v ) ( '~ ' / ' ax )a '~ ;  (2) 

Cru = P(6,k -- 2 e , k ) ( O E / 0 % ) .  

Here trij is stress tensor; u i is material displacement velocity; eij is effective elastic strain tensor; ~oij are relaxation terms 
essential for deformation kinetics; i, j, k, m = 1, 2, 3. Internal energy E for isotropic material is a function of strain tensor 

invariants and entropy. It is convenient to present this relationship in the form [12] E = E(p, D, A, S). The hydrodynamic part 

of the equation of state, i.e., the dependence of  E on density p, characterize all-round compression of the volume, and the 

dependence of effective strain deviator invariants D and A characterizes the change in its form: 

1 2 2 
D = 2(7z 1 + 722 + 7233) -b 712721 q" 723732 q- 731)'13 -3t- O ( g 3 ) ,  m = 

)'t1(722733 - -  723732 ) - -  712(721733 - -  723)'31 ) "t- 7t3(721732 - -  )'31722) H- 

I 

Small parameter e is introduced which characterizes the smallness of the relative change in substance density in a wave or the 

smallness of stress compared with the all-round compression modulus. In Eqs. (1) it is sufficient to limit relaxation terms to 

the following form: ~ij = --'Yij/r(r149 S) (q" is tangential stress relaxation time). The requirement for describing deformation 

kinetics in both the elastic and plastic flow region necessitates retention of the markedly nonlinear form of the dependence of 

~" on strains (or stresses). We recall that in the elastic region dimensionless ~-' --, ~ ,  in the plastic region r '  < O(1), ~' = r/t o, 

t o is characteristic duration of the pressure pulse at the boundary. Formally an ideally elastoplastic model may also be included 

in this scheme by specific selection of the dependence for r or ~" [12]. 

In this work plane or quasiplane waves are considered which arise with normal impact over the boundary of a half- 

space or a layer. We assume that the normal to the boundary is directed along axis x I. In the quasiplane problem the pressure 

pulse operates on some finite region of the boundary, and small parameter e 1 is introduced proportional to the square of the 

ratio of the characteristic wave length to the linear size of this region. Thus it is assumed that in transverse directions [13] 

/)/ax 2' - a/Ox 3' - el 1/2 (x k' = Xk/(C0t0) ). Then from Eqs. (1) it follows that ")'ij - eel 1/2, i # j, whereas 711 - 722 - 

3'33 - ~- 
Small parameter u = (C/2 - C02)/2C02 = 2G/(3p0C02), is introduced, where C l is the phase velocity of  longitudinal 

elastic waves, C O is volumetric sound velocity, and G is shear modulus. For the majority of  metals ~ _< 0.25. Experimental 

data (see e.g. [9, 11]) show that in the range in question pressure parameter v (similar to Poisson's ratio) changes weakly. 

Introduction of this small parameter makes it possible to consider the deviator part of the stress tensor as a value of second 

order smallness, and this means to consider relaxation elastoplastic processes alongside nonlinearity and absorption in the 

following acoustic approximation. The latter is important for applying the technique of multiscale expansion to Eqs. (1) and 
reduction of this set to a simpler one. 

In modelling intense dynamic loading in the stress deviator there is only retention of  terms linear with respect to 7ij, 

and the equation of state is determined in terms of its dynamic part [1] and the dependence of  shear modulus on pressure [14]. 

By expanding internal energy into a series for the increase in density p' = Co - p0)/P0, entropy S'  = T O (S - S0)/C02, 

invariants D and A, considering that aE/aD[o = 2G/po, from Eqs. (2) retaining in the hydrodynamic Part of the tensor aij 
inclusively up to the second order of smallness, we obtain 

/ 

o ' .  = o. / tPodo) = - [ p '  + 2~p '2 + =s'/~Ooro) + 

O(E 3 + ~2v)] + 3v()'. + O(~2)), 

a'~s = 3v lYis + O(e2e~) I + O(eZet)  �9 i ~ :, 

(3) 

where Eps 10 = a'/p02; ot = 4 + po3Eppp [0/C02; T O ----, E s l0 is temperature; index 0 signifies an undisturbed state; parameter 
c~ is determined from a two-term equation of state of the Tate and Gruneisen type [1]. 

Shock Wave Propagation Through Previously Loaded Material. In this section we consider collision of stepped 

shock waves in the simplest case when it is possible to describe interaction by a changeover from an undisturbed to a previously 
loaded state ahead of  the shock-wave front. 
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Let the material be converted by a plane shock wave from a state (o, u, a, 9)r  with t '  --, - oo into a state (p, u, a, xlt) m 

with t' --> + oo ; here tr = tr I 1, f = --'711, t' = t / t  O. We consider an ideally elastoplastic material and MaxweUian material with 

0 < r '  < oo. In the first case the state is undisturbed ~r  = 0, the previously loaded state ~ r  = ~*, and behind the shock- 

wave front fire = fi* (9/2 ~,fi. is yield strength). In the second case in a stationary wave it is evident that fr  = fire = 0 since 

Ofi/Ot' and Op'lOt' --, 0 with I t ' l  --, co. 
From the conservation rules in a steady-state jump without considering internal friction viscosity, thermal conductivity, 

and equation of state (3), it is easy in the approximation adopted to obtain expressions for mass (Lagrangian) velocity Mrm, 

the ratio between velocity and stress, and the dependence ~I,(p') in a wave: 

1 3 
~ /(,OoCo) = +_ [ l  + 4 ( , ~  + 2) (p ' ,  + p '=)  + ~ , ( ~ =  - ~ , ) /  

( p ' , , - p ' ) ]  + O(e 2 + ev) ,  a - a = - M  (u - u,); (4) 

3 1 
~-'v(V, - q,) = a(,o' -- p ' )  - 4(a  + 2)(,o '2 - p,2) + O(e3 + e2v). (5) 

Here a = l/2[Mrm2/(ooC0) 2 - 1]. Relationship (5) describes possible states within waves and shows the dependence of  shear 

stress 9/4 v(fi - fir) on true strain p' .  The parabolic path of  this relationship agrees qualitatively for example with changes 

in shear stress for tungsten'[11]. The steady-state solutions for shock waves for obtained as a result of the consistency of Eq. 

(5) with equations of  deformation kinetics. 

We calculate the change in Lagrangian movement velocity for steady-state shock waves with head-on collision in an 

ideally elastoplastic material. Front trajectories are shown in Fig. 1 (along the axes are Lagrangian coordinate and time), where 

e+ are elastic precursor front trajectories, p+ are plastic shock-wave trajectories. Here the steady-state propagation regime 

corresponds singly to elastic and plastic waves which have a stepped form with a uniform value of  O' behind the front. In the 

whole complex the elastic + plastic wave is not stationary: as the phase shear propagates between fronts it increases. As is 

easy to see, this is possible when the amplitude of the plastic wave Orn' has the form 2/3fi. < Pro' < 4~,/(oe + 2). States of 

the material are shown by numbers 0-5 in Fig. 1, but contact discontinuities are not separated since the change in density at 

the contact discontinuity is a value of the next smallness compared with the change in density in shock jumps. From Eq. (4) 
taking account of  the fact that 

3 
Po ,= P'24 + O(e2), P',.~= P'4s + O(e2) and Po,----" ~'~O, 

( P r m '  = P r o '  - -  P r ' ) ,  w e  have 

I 
(M2, - % l ) / e o C o )  = i (a  + 2)P'o,-  ,,, 

(M4s - M u ) / ( P ~ 1 7 6  = 7 (a  + 2)Po2 
(6) 

etc. It can be seen that with collision of  shock waves there is a phase shift not only as a result of  hydrodynamic nonlinearity 

(the f'trst term in the right-hand part), but as a result of the kinetics, i.e. after collision the elastic precursors propagates as a 
plastic wave. 
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According to Eq. (4) in a Maxwellian material the velocity of a steady-state shock wave with a change-over to a 

previously loaded state only changes as a result of nonlinearity since ffm = ~br = 0. In order to reveal the effect of Maxwellian 
deformation kinetics on the phase shear in a wave profile it is necessary to consider the nonsteady-state problem. It is easy to 
see that steady-state relationship (5) is a consequence of a nonsteady-state equation 

1 3 , 
Op'/Ox'~ - -~ (a + 2 ) p ' O p ' / O ~  - -~v(O~,/O~) = 0, ~ = t' - x t (7a) 

and it is obtained from Eq. (7a) by substituting (Xl', ~l) ~ Y = ~l + 6Xl' and integrating within the limits from y to - o o .  

The equation determining deformation kinetics emerges from the second equation of set (1) 

2 
a~lo~l = -~op'lo~, + ~,.(~,,p') + o & ) .  (7b) 

Set (7) describes propagation through a zero background Or' = 0 along C+ of the characteristic direction. The 

possibility of describing phase shear of interacting waves with a step only occurring due to hydrodynamic nonlinearity for the 

Burgers equation [6] follows from its invariance with respect to the Galileo transformation. Equation (7a), which may be treated 

as a generalized Burgers equation, does not exhibit invariance with respect to this transformation: 

1 
~' = ~, + -i(,~ + 2)p'x'~, p'  = p "  + p~, v' = ~'  + w,, x" = x'~, p~ ~ o. 

We assume that after substituting these relationships in Eq. (7) we introduce new variables ~ and i~: 

~o.(~o' + ~o . , p "  + p ; )  - ~ o . ( @ , p " )  = a ~ / 0 ~  - a , / , ' / 0 ~ ' ,  

= ~ '  + v 0 ( ~ " ,  ~ ' ) ,  ~ = x " ,  

then from Eqs. (7) we shall have 
I 3 

o p " / o , z -  i (a  + 2)p"op"/o~ - -~ov,'/o~ + 

v(OOlOx") (op"lo~) + o(e2v + ev 2) = o. 

It can be seen that if 0-is selected so that 

3 
( O 0 / O x " )  ( O p " / O ~ )  = 2 ( ~ , ' / 0 ~  - 0 ~ , / 0 ~ ) ,  (8) 

then we obtain a transformation which with respect to set (7) is invariant. Thus, the effect of Maxwellian deformation kinetics 

with interaction of a shock wave with a step may be considered in terms of phase shear determined by Eq. (8). It is possible 

to see that Eq. (8) also describes the shear of phases (6) caused by ideally elastoplastic behavior. 
Approximation Nonlinear Steady-State Equations Taking Account of Interact ion.  Use of the multiscale expansion 

technique developed in [6] for set of Eqs. (1) and (3) is not a formal procedure and it requires a modified approach. This is 
connected with the requirement of describing flow in both elastic and plastic regions, i.e. retention of a strongly linear 

dependence of relaxation terms on strains (or stresses). 
In order to factorize sets (1) and (3) we introduce a new unknown function 0j into the phase variable: 

~ = t' - ~lTt(x' l + e ~  + vO), ] = 1,2 (9) 

(Xj = + 1 corresponds to propagation along C:t: of characteristic directions). As is well known [6], phase function ~j(x',  t ') 

considers interaction of waves j = 1, 2 as a result of quadratic hydrodynamic nonlinearity. Similarly it is possible to demand 

that Oj considers interaction as a result of  deformation kinetics. Results of the previous section make it possible to do this. In 
fact, selections of the dependence 0j(xl', ~j) in a form similar to Eq. (8) makes it possible to introduce a procedure for using 

the multiscale expansion technique into the standard procedure. 

After determining the phase variable (9) and selecting Oj in the form of Eq. (12) with the condition 3~b/OV _< O(1) in 
plane (~b, V) for each Lagrangian particle the factorization procedure for set (1) and (3) is similar [6, 15], and therefore it is 

given in the appendix. 
The final result has the form 
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1 1 2 2 1 , 

,l,oV,/Oz - 4(a + 2)v, av, /a~,  - 3vOT,,/a~, - ~,o  v,/o~, - -~t~ f A~ V,d~, = 0; (10a) 

1 
~ , / 0 5 ,  = ~ 0 v , / o $ ,  - ~ , , / ~ ' ( v , ,  ~,,), t = 1,2; 

1 
e a , t , , / a z  = - ,,'7(a + 2 ) v :  l ~ 1, 1, ] = 1,2; 

O0,/Oz = - 3 [ a v e / o v  - o%/aV, l, 

(lOb) 

(11) 

(12) 

where 

I 
~ , / a v ,  = ~ - ~o,/l(oV, lar r '(V,, , , )  l; 

I 
oq, / av = -~ - ~I'1 I(av / o~,) r ' (v ,  ~) I; 

r is determined from the equation 

1 
0, / , /o~ ,  = ~ a v / a $ ,  - V:/~'(v, V:); (13) 

V i = - a l I ' / C '  + k i u i ' ;  V = V 1 + V2;  u 1' = Ul /C0 ;  z = Xl ' (1  + O(e))  is Lagrangian c o o r d i n a t e  o v e r  the  d i r e c t i o n  o f  axis  

xl; C' = C/C0; C is Lagrangian phase velocity (14); A.L is transverse Laplacian operator (for the asymmetric problem A.L 
= 02/3r '2 + (1/r')3/Or', r '  = r/r0);/z << 1 is a dimensionless parameter characterizing internal friction viscosity and thermal 

conductivity. 
In Eq. (12) differentiation with respect to ~i with constant z is inferred (in a Lagrangian particle). In Eq. (11) 

coefficient 1/4(~ + 2) reflects in the approximation in question a Lagrangian record of set (12). It is noted that with Vj = const 
expression (12) for 0 i coincides with Eq. (8). 

In considering the limitation O~/OVlz < O(1) solution of the set of two independent nonlinear Eqs. (10) for 
longitudinal waves gives a uniformly convenient, at least at distances z < O[min(e- 1, /~- 1, v -  1, el - 1)], first approximation 
to solution of the accurate original set (1) and (2). Thus, in order to solve in a quasiacoustic approximation the problem of 
interaction of counter waves it is sufficient to solve set (12) of independent equations and then by using the solutions obtained 
for V k to calculate phase functions from Eqs. (11) and (12). After this Vi(~i ) may be corrected by means of strain variable ~i 
(9) to a form which it had before interaction: 

~, ~ ~, + ,L'(~r + %(z.~,)) .  

Condition O~b/3V [z --- O(1) satisfies the elastoplastic model of the material and viscoelastic models in problems in 

which it is necessary to avoid features at points of inflection 3al 1/a~i = o. This viscoelastic model relates for example to a 
model with elastic unloading. In a number of experiments [9, 11, 16] for studying the propagation of plane compression and 

rarefaction waves in metals the Lagrangian phase velocity C propagation was measured for fixed levels of strain and stress. 
In the approximation adopted here 

C 2 = C2o(dz/dt')2l,. = C2o{1 + (a + 2)p'+ w(o~/op')l:}. (14) 

Experiments for propagation of shock waves in tungsten and aluminum [11, 16] show a jumpwise change in C 2, and 
consequently also in (ar at the points of inflection of profile aa 11/O~i = 0 and (a~b/Op')[z = O(1) close to this point, 
here p' = 1/2V i + 0 @ 2 +  ev) with Vj = 0, i # j. Therefore limitation Or z -< O(1) is apparently a more rapid limitation 
in choosing a kinetic deformation model than in the material itself. 

Introduction of phase velocity C, which has an entirely specific experimental meaning, makes it possible to combine 
phase functions in Eq. (9). We designate F i = er + v0i, then from Eqs. (11), (12), and (14) we have 

I 
o~,/Oz = - ~ I t ' ( v )  - ?(v)]/c~, (15) 
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where C(V) and C(Vi) are Lagrangian phase velocities for the overall wave and the i-th in absence of  the j-th respectively. 

Collision of  Two Plane Stepped Shock Waves. On the basis of the assumptions of Eqs. (9)-(13) we perform solution 

of the simplest problem of collision of two plane stepped shock waves in an ideal elastoplastic material. In this case Eq. (10b) 

is written in the form 
1 

ou.,/or = ~ov , / o r  w,o. Iv ,  I < ~ . .  aria OU,,/O~, = O. who. lU',I = V . "  (16)  

Impact occurs simultaneously over boundaries z = 0 and z = Z 0 of the layer (see Fig. 1). Then for limiting large 

acoustic Reynolds numbers (/~ = 0) the solution of Eq. (10) has the form (V. _< Vim 8u/(~ + 2)) 

v, = v .  [H(~,  - ~,.,) - H(~ ,  - ~,.,)1 + V H(~ ,  - ~;.,).  (17) 

Here X i = + 1, i = 1, 2; H(x) = 1 with x > 0; H(x) = 0 with x < 0; ~i,e and ~i,p are coordinates of  the elastic and plastic 

fronts: ~i,e = [1/8(c~ + 2)V. + o][-Xiz + 1/2(X i - I)Z0], ~i,p = 1/8(c~ + 2)(V. + Vim)[-Xiz + 1/2(X i - 1)Z0] (V, = 

2001' + O(e 2 + ev) is elastic precursor amplitude, Vim are wave amplitudes Vim = 2003' + O(~ 2 + ev) and V2m = 2002' 

+ 0 ) ~  + ev)). Before'collision 0 i = ~ i  = 0;  ~1 = t '  - Z, when ~2 < ~2,e, and ~2 = t' + z - Z 0, when ~1 < ~l,e. After 
collision 

1 1 1 
~i = t l  - 8(cx + 2)Vj, .  + ~'v~e,e(~;) ]{[1 + 4 ( a  + 2 ) V j .  - vf~,.p(~)lt' - 

1 1 1 
a,z + i ( a ,  - O z  o) - i t Z ( a  + 2)v, , .  - , , ~  .~ (~ , ) ]z  o + o ( ,  ~ + , , ,  + , , ' ) .  

~ . , ( ~ , )  = H ( ~ , -  ~,.,) - H(~,  - ~,.,). 

The phase variable after interaction is denoted in terms of ~i. Substitution of ~i instead of ~i in Eq. (17) gives the solution after 

collision. The change in phase velocity of shock waves as a result of collision agrees entirely with that given in (6). 

Serf-Reaction of  a H-Shaped Shock Wave on Emerging at a Free Surface. Dynamic Material Properties. We 

consider a problem of practical interest of the self-reaction of a plane shock wave on emergence at a free surface of a plate 

obstacle. A wave of rectilinear (U-shaped) profile forms on entering the obstacle with normal impact with a plate of  the same 
material. If  U 0 is striker plate velocity, then shock-wave amplitude V l m =  U0/C 0. 

We assume that the plate material is ideally elastoplastic. In this case the solution may be written in explicit form. 

Wave duration at the entry to the obstacle is assumed as unity. Evolution of wave V 1 in the obstacle with large Reynolds 

numbers is described Eqs. (10a) and (16) with i = 1, # = e 1 = 0. The solution of VI(~ 1, z) at depth z > 0 has the form (Vim 
< 8vl(e~ + 2), i.e, presence of an elastic precursor is assumed) 

v~(~1,z ) = v . a , , ( ~ )  + v ~ , ~ , . ~ ( ~ , )  - 2v . f~ , . k (~ , ) (~  - ~ , ) / ( ~  - ~,) + 
(v~,. - 2v.)[f~k,.(~l) + fL.,(~l)( l - , ~ , ) / ( l  - ~.)1, (18) 

where flgt(~l ) = H(~ 1 - ~g) - H(~ 1 - ~f); ~p = -1/8(,~ + 2)(Vlm + V,)z;  ~e = - I ~ , l  + ~p; I~,1 = (~ - 1/8(~ + 
2)Vlrn) z > 0 is elastic precursor duration; ~s = 1 - [1/4(~ + 2)Vlm + v]z; ~n = 1 - 1/4(~ + 2)(Vlm = 2V.)z; ~k = 
~n - pz, ~l = 1. Counter wave V 2 = 0, and therefore V 1 = - 2 a l l ' / C ' .  
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Let the obstacle thickness z = Z0/2; in this plane there is reflection of incident wave V 1 from the free surface and 

reflected wave V 2 arises so that (V 1 + V2) lz = zd2 = 0. Free surface velocity u' = 1/2(V 1 - V2) lz=zd 2 = VI(~I,Zo/2) is 
a value normally measured in experiments. Calculation of self-reaction for the incident wave (i.e., reaction of the incident wave 

and that caused by its reflection) is carried out by Eqs. (9)-(13) in variables (~1, z) (we consider the case of 4V. < V l m <  
8~,/(a + 2)). Before reaction 

1 
0~= 0 1 =  0 , 0 <  z <  ~(Z 0 - ~ + ~ , ) , ~ =  t ' -  z. 

After reaction (z = Z012) 
1 1 

~,v~(r = ~(,~ + 2)v~,,,q~ - t.)c~ , ,q,)  + o &  + ~.,); 

1 I 
olql,-iZo) = - i . l ~ . l  [Hq ,  - ~,,) - ,vq l  - ~ - A ) I  + 

�89 .~q l )  ~(~1 - ~ , , )~ , . ,~qO + 

1 I 

~(~ , ,  - ~ ) f L , . ~ ( ~ I )  - ~-(~,  - ~ ) ~ o . , ( ~ 0 .  

(19) 

(20) 

Here ~a -- 1/2(~k + ~s); ~b = ~n + ~k -- ~s; values I f* l ,  ~p, ~s, ~k, ~n are in accord with z = Z0/2; VI(~ p - 0) = V,;  
parameter 0 < Ap << 1 corresponds to the final width of the plastic shock-wave front so that VI(~ p + Ap) = 2V.,  VI(~ p 
+ Ap + 0) = Vlm with Ap --- 0. In Eq. (19) the estimate of accuracy for ~ i Eq. (19) complies with Z 0 - O(1); the expression 
for phase function 01 describing the if'me' structure of reaction as a result of elastoplasticity adopted up to Z 0 - O[min(e-1, 
r f l ) ] .  

By means of substituting the independent phase variable ~1 = ~1 - ~01, where ~ = t' - z, from solving Vl(~x,Z0/2) 
by nonuniform deformation of it in accordance with Eq. (20) we obtain the solution VI(~I,Z0/2),  in which the effect is 

considered for self-reaction only as a result of  elastoplasticity: 

1 
P,(~.~Zo) = v .  [c~ .p(~,) + c~....(~l) I + v~,cap...(r - v.~..,..(~)(~ - 

~ , ) / ( ~ , ~  - ~,~,) + ( v ~ ,  - v . ) ~ o p . ~ , ( ~ l )  - v . ~ , , . ~ , ( ~  1) x 

(~1 - ~ , , ) / ( ~ , ,  - ~ , , )  + ( v ~  - 2 v . ) f ~ , , . ~ , ( ~ l )  - 

2 v . ~  . ~ . ( ~ l ) ( ~  , - ~ . , ) / ( ~ ,  - ~ . . )  + 

( v ~ ,  - 4 v . ) l ~ , . , , ( ~ , )  - c z , . , . , , ( ~ l ) ( ~  - ~ ) / ( ~ , ,  - ~ , ~ ) 1 .  

(21) 

Here 
1 1 I 

1 1 1 

1 1 1 
~o - ~ ( , L  - ,~,); , ~  = ~,, - ~ ( , L ,  - ~ ) ;  'L,~ = l --  ~ - , , ( ~  --  ~,). 

Solution ~'x Eq. (21) (solid line) is compared in Fig. 2 with solution VI(~l,Z0/2) Eq. (18) (broken line) without 

considering the effect of  self-reaction (01 = ~I  = 0). It can be seen that self-reaction as a result of  elastoplastic deformation 
kinetics (v ~ 0) affects qualitatively the free surface velocity prof'fle; the elastic precursor acquires a two-stage form, and to 

a considerable extent the step of  elastic unloading is smoothed and changes its shape. Appearance of a second step for the 

precursor, as also for steps in elastic unloading with V 1 = V l m  - V. ,  is caused by reaction with the reflected precursor. The 

duration of these steps for obstacle thickness Z o - O[min(~ -1 ,  v - l ) ]  is approximately the same and it is r/21~.l + O(e 2 + 

e~,). Consideration of phase function ~1(~1, Z0/2) Eq. (19) in the phase variable leads to uniform extension of profile V1 with 

~1 > ~p, which does not change qualitatively the nature of the difference between VI and V 1 (Fig. 2) at the free surface. 
Appearance of a two-stage precursor in the free surface velocity profile is detected with numerical calculation for the accurate 

set of equations (type 1)) and the elastoplastie model for beryllium [10, Fig. 7], and tantalum [17, Fig. 7]. In the last case 

calculation by the accurate set also confirms the presence of steps in elastic unloading with V 1 = V l m  - V,  (Fig. 2). 

Quantitative comparison also gives good conformity. 

252 



. I \ 

Fig. 3 

For completeness we write a solution for a 'rough' structure for self-reaction of a shock wave falling on a free surface 

which complies with Z 0 - O(1). From Eqs. (19) and (20) keeping in v01 only linear terms for small parameters we obtain 

I I 
~, = (c  - O I l  - ; ( ,~  + 2 ) v ~  f~ . ,(~,)  - ~ ' ~ , . , ( ~ x ) l  + o ( d  + ~v) ,  (22) 

~e < ~1 < ~l = 1; ~e, ~p, ~k, ~s correspond to z = Z0/2. Solution VI(~I,Zo/2) is easily found from Eqs. (18) and (22) in 
form 

1 
P~(~, ,2z0) = v . f a . p ( ~ l )  - 2 v . f a c . ~ ( ~ O ( ~  ~ - ~ ) / ( ~  - ~ , )  + 

v, .  Qe.h(~,) + (V,~, - 2V.)[f~h.~(~,)  + f ~ ( ~ ) ( ~  - ~ ) / ( ~  - ~,)1,  (23) 

where ~f = 1 + l/8(a + 2)Vlm; ~e = ~s + l12v + l/8(tx + 2)Vlm; ~h = ~k + ~c -- ~s; ~g = ~n + l /8(a + 2)Vlm;/in 
corresponds to z = ZO/2. It can be seen that in this case self-reaction as a result of elastoplasticity reduces the duration of the 

elastic unloading step in V 1 = Vim - 2V.  to the value v/2, and the elastic unloading slope remains unchanged. 
Appearance of a two-stage precursor in the free surface velocity profile is detected in the experiments of Taylor and 

Rice (Armco-iron), and Hopson (boron carbide, MgAI204) (see [18]). It should be noted that comparison with an experiment 
in the unloading region-is difficult due to superimposition of the coarser effects of failure . As can be seen from numerical 
modelling of the accurate original set with stage wise complication of the kinetic deformation model carried out in [10], 

consideration of the dependence of kinetics on deformation velocity smooths the second precursor, and this is probably 
explained by the fact that is only observed in individual experiments for measuring free (or contact) surface velocity. In fact, 
as test calculations* showed the same result follows from Eqs. (10) with use of relaxation Eq. (10b), for example for the 

material of Gilman [19]. 
It is evident that with mathematical treatment of experiments for measuring free or contact surface velocity the linear 

approximation which is normally used is not satisfactory. A change=over to the next order in disturbance theory, i.e. to Eqs. 

(I0)-(12), makes it possible to determine dynamic properties more accurately: yield strength, strengthening, metal toughness, 

etc. 
Agreement of the results obtained on the basis of approximation Eqs. (9)-(12) suggested with numerical solutions of 

the accurate original set and experiments confirms the practical importance of these equations for describing the reaction of 
nonlinear waves in materials with elastoplastic deformation kinetics. 

It is also evident that set (9)-(12) may be used for calculating material flow with spalling in a quasiplanar 
approximation. 

Reaction of  Nonl inear Acoustic Waves in Metals with Microplasticity. It is well known that microplasticity leads 

in metals to anomalously high nonlinearity which is not described within the scope of the five-constant elasticity theory [2]. 
For definiteness we choose the dependence (r(e) in the form [20] corresponding to the well-known Granato-Lucca model [2] 

suggesting absence of residual strains and recovery: 

cr = ~(E + rf(g)), f(e-') = -sgn~ (24) 

[ ~-e e, e e  < O. 

*Calculations performed by O. G. Zavileiskii. 
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Here ~ and e m are strain and strain amplitude; t~ is Young's modulus; Cy = (E/#0)I/2 is longitudinal elastic wave velocity in 

a rod; - / is  a parameter defining nonlinearity caused by microplasticity. We consider a thin rod (a = a~ 1, ~ = ell)  and T >> 
1/2((x + 2). Characteristic values are 3, -=- 103, tx = O(1), g -- 10 -6. 

In this case the procedure for factorizing Eqs. (1) and (24) leads to an approximation system 

bx '  0 V i 

~o, l'v(v) I _ ,v'(v,) ~. 
% x  ' ' 7 = } ' [  ov IV=V~*V~ 0V, j '  ~ =  1,2, 

(25) 

where ~ = t' - ;t~t(x ' + tO,); V, = - e  u + 2,u~/~); 2~ = _1;  x' = x~/C/o, Also as for Eqs. (10)-(12) the solution of set (25) 

gives a uniform approximation suitable for solving original set (1). It is possible to see that if everywhere ~gt > 0, for 
Of(V)/OV = - 1 / 4 ( V  sgn(~)) and 0 i coincides with ~'1 (i 1) with an accuracy up to a constant multiple, and set (25) reverts to 

a set of Burgers equations similar to (6). However, if there is unloading (eet < 0), then the situation changes. 

By analogy with the previous section we consider the problem of self-reaction of a plane longitudinal wave on its 

emergence at a free rod end. Shown in Fig. 3 is the response of a free end of a rod with length ~- O(1) calculated by (24) and 

(25) with action at the other end of a rectangular pulse V 1 = Vlmflek(~l) (the broken line is solution without considering self- 
reaction, and the solid line is with it). It can be seen that self-reaction caused by microplasticity distorts unloading in the 

response profile. In Fig. 3 
1 

~ - ~ ,  = ~ - ~,~ = 1--~,6 v ~ , , ( ~  - ~,)  + o & ) ,  
l 

~,(x') = ~,(0), ~ (x ' )  = ~,(0). + s-Tv~,.x'. ~,.(x) = 
t 
4-uv~..x' + ~.(0). 

Equation (25) may evidently be used for studying quasiacoustic resonance in a rod. 
Appendix.  Factorization o f  set  (1) and (3). We expand aij, uj, p, eij into a series of small parameters e, v,/~, e 1 . By 

drawing attention to the estimates made in the second and fourth sections in the lower order with respect to ~, from Eqs. (1) 

and (3) we obtain 

at--( '*'1 ) Ao-~l ( u, 1 J = O, A = . (A.1) 

We introduce matrices T and R consisting of the left- and right-hand eigenvectors of  matrix A, then TikAk/R/j = Xi8ij, TikRkj 

/1 1 '  ~ ( ) 
= ~i',,j T = ~,|1 - 1|,). ~l~ = ( - 1 )  - ,  i = 1, 2. We introduce new variables V = T u, n-an , ~jj from Eq. (9), dz = (1 + 
p')dXl' .  We expand V and u'  into series 

v, = . v .  + , % '  + + + . , v ' ; , '  + .... u ' ,  = + . . . .  

i = 1 ,2 ,  l = 2 , 3 .  ( A . 2 )  

It is clear from (A. I) that Voi is constant along ~i = const. In the next series in accordance with the technique of multiseale 
expansions we require that 

X ~ V~ = v~(~,,z.,z.,z~,z, l, .), 
X '  V u = Vl,(~i,~ez,,z,.,z~,z q, ,,), (A.3) 

where z = ez; z = vz; z = l~z; z,1 = e~z; x,,~ = e~x',; l = 2,3., Then for the next terms of the expansion we have 

' aVo [a 

4(a  + 2 ) V ~ , ~ }  - ~ [ a : ' ( 1 - L / a ) - ~ j + ~ ( a + 2 ) v ~  
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E ( 1 -  ' a'> W "~I/ ;Jr + ['" - 3 - I"' i Oz O~, [ 

~[;t71(1_ / ao, (o~o(v3 a~o,/]ov~ 
~, ~ , )g  + 3 t 77 oe, jj -r = o,~ .. :. ,,:,m = 1,2; 

~V' , ~ + -  7 I  0, ! ' 

(A.5) 

(A.6) 

where gik = gl(-- 1) i+k 
material parameter; 

+ ~ ~ = #ii, /Zl,2 are dimensionless coefficients of viscosity and thermal conductivity; 7r is a 

+ - -  q }  - 

[ ox2 q + = O, i * j ,  i , j ,m  = 1,2. 
(A.7) 

It is necessary that phase functions ~i, 0i in Eqs. (A.4) and (A.5) satisfy Eqs. (11) and (12) taking account of 0/0~j 
= [hi/(l - hi/Xj)]0/az. Then it is easy to see that the expressions in braces in Eqs. (A.4)-(A.7) on integration with respect 
to ~j(j # i) produces secular terms in Vli. In order to avoid secular terms we equate these expressions to zero. Then 
considering Eq. (A.2) and the expansion 

~v{~ av~ ov~ ov~ av~ 
= g + v - -  + I t - -  + es  Oz Oz ,)z ~'Jz 

we obtain Eq. (10a). 
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